P: ISSN NO.: 2394-0344 E: ISSN NO.: 2455-0817 RNI No.UPBIL/2016/67980

VOL-3* ISSUE-5* (Part-1) August- 2018 Remarking An Analisation

Vector Time Series and Its Properties

Abstract

Productivity of a region can be treated as a vector time series. In this article, we have treated productivity of kharif jawar of Marathwada of Maharastra state as a vector $\bar{r} = (X_1, X_2, \dots, X_5)$. Where $X_1 =$ productivity at Aurangabad, X_2 productivity at Parbhani, $X_3 =$ productivity at Osmanabad, $X_4 =$ productivity at Beed and $X_5 =$ productivity at Nanded. Thus, we get a vector time series, $\bar{T} = (r_{ij})$, $i = 1, 2, \dots, n$ years, $j = 1, 2, \dots, 5$ districts. This opens up very interesting questions. How are the properties of T related to component time series?

A preliminary discussion of properties of vector time series and possible testing methodology for stationary property precedes the actual application to regional productivity data.

Keywords: Time Series, Vector Time Series, Regression Analysis, Auto Covariance, Auto-Correlation.

Introduction

Vector time series can occur naturally in real life. For example, if we consider the productivity of kharif jawar over a region, where productivity is recorded over a cluster of recording stations, we get a vector productivity time series. To what extent the properties of component time series determine the properties of the regional vector time series is worth looking into.

In what follows are first discussed in relation to, few properties of vector time series and then tried to compute the same for the regional annual productivity of kharif jawar record of Marathwada by using data from 1976 to 2002.

Objectives of the Study

- 1. To develop theory of Vector time series. Specially improving the theorems which characterize vector time series.
- 2. To develop algorithms for analyzing vector time series, which use the characterizing theorems.
- 3. By using data from Marathwada Region for validating the algorithms, and testing the methods.
- 4. To interpret the results of characterizations, in real economic and social terms.

The main purpose of this work is to summarize the research work carried out on the above given objectives and to draw useful conclusions on the basis of auto regressive time series analysis. A way to check trends and randomness in the data scalar as well as vector time series by using properties of auto covariance.

Basic Concepts

Basic definitions and few properties of vector time series are given in this section.

Definition 2.1: A Random Vector

A random vector, $\overline{X} = (X_1, X_2, \dots, X_K)$ is a single valued function whose domain is Ω , whose range is in Euclidean n-space \mathbb{R}^n and which is B-measurable, i.e. for every subset $\mathbb{R} \subset \mathbb{R}^n$ { $\omega \in \Omega \mid X_1(\omega) \dots X_K(\omega) \in \mathbb{R}$ } \mathbb{C} B. A random vector will also be called an K- dimensional random variable or a vector random variable.

If $X_1, X_2 \dots X_K$ are k random variables and $\overline{X} = (X_1, X_2, \dots X_K)$ is a random vector, [18].

Definition 2.2: A Vector Time Series

Let (Ω, C, P) be a probability space; with Ω sample space; $C = \sigma(\Omega)$. Let T be an index set and N = {1,2... k}. A real valued vector time series is a real valued function X _{it} (ω), i = 1,2...k defined on N ×T × Ω such that for each fixed t \in T, i \in N, X _{it} (ω) is a random variable on (Ω , C, P).

A vector time series can be considered as a collection {X $_{it}$: t \in T }, i =1,2 ... k of random variables [14].

B. L. Bable

Head, Deptt.of Statistics, Dnyanopasak Mahavidyalaya, Parbhani, Maharastra

D. D. Pawar

Professor and Chairman, Deptt. of Statistics, N.E.S. Science College, Nanded, Maharastra

E: ISSN NO.: 2455-0817

Definition 2.3: Stationary Vector Time Series

A process whose probability structure does not change with time is called stationary. Broadly speaking a vector time series is said to be stationary, if there is no systematic change in mean i.e. no trend. There is no systematic change in variance.

Let $\overline{X} = (x_1, x_2, \dots, x_n)$ be realizations of random variables (X_1, X_2, \dots, X_K) .

Definition 2.4: Strictly Stationary Vector Time Series

A vector time series is called strictly stationary, if their joint distribution function satisfy

$$(\bar{x}) = F_{(\bar{x})} \dots \dots (1)$$

$$x_{1t} \sum_{2t} kt \qquad the actuality must held for a$$

Where, the equality must hold for all possible sets of indices it and (it + h) in the index set. Further the joint distribution depends only on the distance h between the elements in the index set and not on their actual values.

Main Results

Theorm 3.1

F

If { X $_{it}$: t C T }, i =1, 2,...k is strictly vector time series with E{X $_{it}$ }< α and

 $E{X_{it} - \mu} < \beta$ then,

 $E{X_{it}} = E{X_{it+h}}$, for all it, h

and E [{X_{it} - μ_i }{X_{jt} - μ_j }] = E [{X_{it+h} - μ_i }{X_{jt+h} - μ_j], for all it, h } ...(2)

Proof

Proof follows from definition (2.4).

In usual cases above equation (2) is used to determine that a vector time series is stationary.

Definition 3.1: Weakly Stationary Vector Time Series

A vector time series is called weakly stationary if

- 1. The expected value of X it is a constant for all it.
- The covariance matrix of (X 1 t, X 2 t,.... X kt) is same as covariance matrix of

 $(X_{1t+h}, X_{2t+h}, ..., X_{kt+h}).$

A look in the covariance matrix $(X_{1t} X_{2t} \dots X_{kt})$ would show that diagonal terms would contain terms covariance (X_{it}, X_{it}) which are essentially variances and off diagonal terms would contains terms like covariance (X_{it}, X_{jt}) . Hence, the definitions to follow assume importance. Since these involve elements from the same set $\{X_{it}\}$, the variances and co-variances are called autovariances and auto-covariances.

Definition 3.2: Auto-Covariance Function

The covariance between { X $_{it}$ } and { X $_{it+h}$ } separated by h time unit is called auto-covariance at lag h and is denoted by Γ_{ij} (h).

 $\Gamma_{ij}(h) = cov (X_{it}, X_{jt+h}) = E\{X_{it} - \mu_i\}\{X_{jt+h} - \mu_j\}$(3)

The matrix $\Gamma \overline{h} = \Gamma_{i j}(h)$ is called the auto covariance matrix function.

Definition 3.3: The Auto Correlation Function

The correlation between observation which are separated by h time unit is called auto-correlation at lag h. It is given by

Where μ_i is the mean of i^{th} component time series. **Remark 3.1**

For a vector stationary time series the variance at time (it+h) is same as that at time it. Thus, the auto correlation at lag h is

$$P_{ij}(h) = \frac{\prod_{i=1}^{n} \prod_{j=1}^{n} \prod_$$

Remark 3.2

For h = 0, we get $\rho_{ij}(0) = 1$.

For application attempts have been made to establish that productivity at certain districts of Marathwada satisfy equation (1) and (5).

Definition 3.4: Positive Semi-Definite

A function f(x) defined for $x \in X$ is said to be positive semi-definite if it satisfies

$$\sum_{J=i}^{n} \sum_{k=1}^{n} a_{k}^{T} f(t_{j} - t_{k}) a_{j} \ge 0,$$

For any set of real vectors $(a_1, a_2, ..., a_n)$ and any set of indices $(t_1, t_2 ..., t_n) \in T$ such that

 $(t_j - t_k) \in X.$ Theorem 3.2

The covariance function of vector stationary time series {X $_{it}$: t C T } is positive semi-definite function in that

$$\Sigma \sum_{J=1}^{n} \sum_{k=1}^{n} a_{k}^{T} \Gamma(t_{j} - t_{k}) a_{j} \ge 0,$$

For any set of real vectors $(a_1, a_2,...,a_n)$ and any set of indices $(t_1, t_2 ..., t_n) \in T$. **Proof**

The result can be obtained by evaluating the variance of

$$X = \sum_{j=1}^{n} a_j^T X_{tj.}$$

For this without loss of generality $E(X_{tj}) = 0$. It shows that the variance of a random variable is nonnegative i.e. $V(X) \ge 0$.

$$V(X) = V(\Sigma a_j X_{tj}) \ge 0$$

$$= E \left(\sum_{j=1}^{n} j^{\mathsf{T}} X_{tj} \right) \left(\sum_{k=1}^{\mathsf{T}} a_{j}^{\mathsf{T}} X_{tj} \right) \ge 0,$$

$$= \sum_{J=1}^{n} \sum_{k=1}^{n} a_{j}^{\mathsf{T}} a_{k} E\{X_{tj} X_{tk} \} \ge 0,$$

$$= \sum_{J=1}^{n} \sum_{k=1}^{n} T (t_{j} t_{k}) a_{j} \ge 0 \qquad \dots (6)$$

Hence proved.

VOL-3* ISSUE-5* (Part-1) August- 2018 Remarking An Analisation

 $[\Gamma_{ii}(h) \Gamma_{jj}(h)]^{1/2}$

E: ISSN NO.: 2455-0817

Theorem 3.3

 $|\rho_{12}(h)| \le 1.$

Proof

If we set n = 2, in the equation (6) to obtain,

 $\sum_{\substack{n \in \mathbb{Z}^{2} \\ \Gamma_{22}}}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \Gamma_{i}(t_{i} - t_{j}) a_{i} = a_{1}^{2} \Gamma_{11}(0) + a_{2}^{2}$

 $a_1^2 \Gamma_{11}(0) + a_2^2 \Gamma_{22}(0) \ge -2a_1 a_2^T \Gamma_{12}(t_1-t_2),$ since $\Gamma_{11}(0) = \Gamma_{22}(0)$ $-a_1 a_2^T \Gamma_{12}(t_1-t_2)$ $1/2(a_1^2 + a_2^2) \ge -\frac{1}{\Gamma_{11}(0)}$ Now, let $a_1 = a_2 = 1$ and $t_1 - t_2 = h$, - Γ12(h) 1 ≥ $= -\rho_{12}(h)$ (7) Г₁₁(0) Similarly, $-a_1 = a_2 = 1$; it shows that $P_{12}(h) \le 1$... (8) From (7) and (8) we get $|\rho_{12}(h)| \le 1.$ Hence proved. Theorem 3.4 The auto covariance matrix of vector stationary time series is an even function of h. i.e., $\Gamma_{ii}(h) = \Gamma_{ii}(-h)^{T}$. Proof Here.

 $Cov(X_i, Y_{i+1}) = \{\Sigma X_i Y_{i+1} - 1/n\Sigma X_i \Sigma Y_i\}/n,$ If X i, Y i are different series. $Cov(X_i, Y_{i+1}) \neq Cov(X_i, Y_{i-1})$ i.e. $\{\Sigma X_{i}Y_{i+1} - 1/n\Sigma X_{i}\Sigma Y_{i}\}/n \neq \{\Sigma X_{i}Y_{i-1} - 1/n\Sigma X_{i}\}$ ΣY_{i+1} /n $\therefore X_1Y_2 \neq X_2Y_1$ When X_i, Y_i are identical series $\Gamma(1) = \Gamma(-1) ,$ Otherewise not true.

Hence, $\Gamma_{ij}(h) = \Gamma_{ij}(-h)^{T}$ proved. Theorem 3.5

Let X it'sbe independently and identically distributed with E(X it) = μ_{\perp} and var(X it) = σ_i^2 then

This process is stationary in the strict sense.

Testing Procedure

Using the model for table-5.1B $(\beta_0)_i + (\beta_1)_i t_i + \epsilon_i, \quad i = 1, 2, ... 5$ X i = . . . (9)

Where

- 1. X_i are annual productivity series X_i(t), i = 1, 2... 5 for five districts.
- 2. t i are the time (in years) variable.
- \in i, are a random error term normally distributed 3 as mean zero and variance σ^2 , i.e $\in_i \sim N(0, \sigma^2)$.

Productivity X i (mm) are the dependent variables and time t i (in years) are independent variables.

Using the model for table-5.2C and 5.3C

VOL-3* ISSUE-5* (Part-1) August- 2018 Remarking An Analisation

 $\Upsilon_{ij}(h) = (\beta_0)_{ij} + (\beta_1)_{ij} h + \in_{ij}, i = 1, 2, ..., 5; j = 1,$ 2, ... 5 ... (10) Where

- $\Upsilon_{i\ j}$ (h) are auto-covariance values for individual 1. series and auto-covariance matrices for vector time series .
- h are the lag values of variable. 2.
- \in i are a random error term normally distributed 3. as mean zero and variance σ^2 , i.e. $\in_i \sim N(0, \sigma^2)$. $\Upsilon_{i,i}$ (h) are the dependent variables and h are independent variables.

 $\Upsilon_{ii}(h)$ are the dependent variables and h are independent variables.

Defining $\Upsilon_{ij}(h) = cov (X_i, X_{j+h})$, (i = 1, 2...5; j =1, 2...5) were computed for various values of h by using MS-Excel. Since the total series constituted of 31 values at least 10 values were included in the computation. The relation between $\Upsilon_{ii}(h)$ and h were examined the model in (table-5.2C).

Defining the $\Gamma_{i j}(h)$ = cov (X _i, X _{j + h}), covariance matrix with a stationary time series for observations $\overline{X} = (x_1, x_2, \dots x_n)$ realizations and ρ_{ij} (h) = correlation (X $_i$, X $_{j+h}$) correlation matrix with a stationary time series for observations $\overline{X} = (x_1, x_2, ..., x_n)$ x n) realizations, 21 such matrices corresponding to h = 0 to 20, define one series of matrices each 5×5, and hence 25 component series were computed . The relation between $\Gamma_{i j}(h)$ and h were examined in the model.

The method of testing intercept $(\beta_0)_{ij} = 0$ and regression coefficient $(\beta_1)_{ij} = 0$, [10]. Null hypothesis for test Statistic used to test and set up. Inference concerning slope (β₁) i j

For testing H_0 : $(\beta_1)_{i j} = 0$ Vs H_1 : $(\beta_1)_{i j} > 0$ for α = 0.05 percent level using t distribution with degrees of freedom is equal to n - 2 were considered. $t_{n-2} = \beta_1 / s_{\beta_1}$

Where β_1 is the slope of the regression line and $s_{\beta 1} = s_e / s_t$ and $s_e = [SSE / n - 2]^{1/2}$

sum of squares due to errors (SSE) = $(s_t^2 - s_t^2)$

 $\begin{array}{l} s_{tx}^{2}/s_{t}^{2}), s_{tx}^{z} = \Sigma(t_{i} \quad \overline{t}) (X_{i} \quad \overline{X}) \\ s_{t}^{2} = \Sigma(t_{i} \quad -\overline{t})^{2}; s_{x}^{2} = \Sigma(X_{i} \quad -\overline{X})^{2}. \end{array}$ The residual sum of squares or the sum of squares due to error is SSE .

The relation between $\Upsilon_{ij}(h)$ and h were examined the model in (table-5.2C).

From model, $\Gamma_{ij}(h) = (\beta_0)_{ij} + (\beta_1)_{ij} h + \in_i$,

Table-5.3B was obtained by regressing values of $\Gamma_{i}(h)$ against h, by using this, testing shows that , both the hypothesis $(\beta_0)_{ij} = 0$ and $(\beta_1)_{ij}$ = 0 test is not positive. (Table-A1, APPENDIX-A) formed the input for table-5.3B.

Example of Vector Time Series

Regional productivity of kharif jawar data.

Here is a real instance of a vector time series productivity of kharif jawar data of Marathawada region was obtained from five districts, namely Aurangabad, Parbhani, Beed, Osmanabad, and Nanded. The data were collected from Season and Crop Report, Epitome of Agriculture (part-ii) for

E: ISSN NO.: 2455-0817

Maharastra state and Maharastra Quarterly Bulletin of Economics and Statistics, Bombay [2, 3, 4].

Hence.we have five dimensional time series t_i , i = 1, 2, 3, 4, 5 corresponding to the districts Aurangabad, Parbhani, Beed, Osmanabad and Nanded respectively. Table 5.1, shows the results of descriptive statistics and Table 5.1B. shows linear trend analysis. All the linear trends were found to be not significant.

Over the years many scientists have analyzed rainfall, temperature, humidity, agricultural area, production and productivity of Marathwada region of Maharastra state, [1, 5, 6, 7, 8, 9, 11, 12, 13, 15, 16]. Most of them have treated the time series for each of the revenue districts as independent time series and tried to examine the stability or nonstability depending upon series. Most of the times non-stability has been concluded, and hence possibly any sort of different treatment was possibility never thought of. In this investigation we treat the series first and individual series and then as a vector time series shows that the vector time series are not stable.

Conclusion

For Scalar Time Series

It was observed that t values are therefore significant for the 4 districts, except Beed district i.e. conclude that X i depend on t for 4 districts [14]. Similarly $\Upsilon_{i,i}(h)$ does not depend on h for 4 districts,

VOL-3* ISSUE-5* (Part-1) August- 2018 Remarking An Analisation

except Nanded district. The testing shows that, for the hypothesis $(\beta_1)_i = 0$, test is positive for t, for all four districts and for h test is positive for one district.

Generally it is expected that, productivity of kharif jawar over a long period at any region to be not stationary time series. These results conform with the series in Nanded district.

For Vector Time Series

To conclude that a vector time series is not stationary, it is necessary to test association between $\Gamma_{ii}(h)$ and h.

In terms of productivity series, the 6 series have been attained significant. Due to the significant values in productivity the Nanded individually Parbhani/Osmanabad, Parbhani/Aurangabad, Parbhani/Nanded, Parbhani/Beed, Nanded/ Osmanabad in combinations have turned that the variations which are responsible for the non-stationary nature of the series (table 5.3B).

Hence it is concluded that the whole of the regional productivity of kharif jawar are not stationary status and they have set a trend.

Analysis of Regional Productivity

Productivity Time Series for Each District as **Scalar Time Series**

To begin with, a straight forward analysis of the five productivity series was carried out to test their trends as a scalar time series.

• , • ,						
Table-5.1A:	: Elementary Analysis o	of District-Wise I	Productivity per	Hector Data (in	Tones) of Marathwa	da
		Region for 27	Years (1976-200)2).		

	Cities	Aurangabad	F	Parbhani	Osmanabad		Beed	Nanded
	Mean 1079.7			986.5	1015.6		874.3	1060.8
	S.D.	322.5		398.9	395.4		333.3	439.5
	C.V.	29.9		40.4	38.9		38.1	41.4
Table-5.1B:Test of significance for $\beta_1 = 0$ the model : X _i (t) = (β_0) _i + (β_1) _i t + ϵ_i , i = 1, 2,5							.5	
	District	Coefficie	Coefficient		Standard Error		t Stat	Significance
	Aurangabad	βo	βo		122.3		6.994	S
		β1	β1		7.6		2.095*	NS
	Parbhani	βo	βο		144.1		4.464	S
		β1		24.5	9.0		2.728*	S
	Osmanabad	βo	βο		146.5		4.825	S
		β1		22.1	9.1		2.412*	S
	Beed	ße		654.2	127 5		5 129	S

8.0

160.4

10.0

26.0 t = 2.06 is the critical value for 25 d f at 5% L. S. shows the significant value

15.7

696.7

A look at the table (5.1A) shows that all of them have similar values of CV. Which indicates that their dispersion is almost identical. Trends were found to be significant in all four districts except Beed District. A simple look at the mean values shows that a classification as

 β_1

βo

βı

C1 = { Aurangabad, Osmanabad, Nanded }

C2 = { Parbhani, Beed }, Could be quite feasible.

Trend

Nanded

Absence of linear trend, which reasonably low cv values can be taken as evidence of series being stationary series individually in Beed district.

Further search for evidences of stability included determination of auto covariance and their dependency on lag variable h (Table 5.2A). As we know a real test for stationary property of the time series can come establishing that the auto covariance do not depend on the lag variable [14]. Using the model for,

1.975

4.342

2.597*

NS

S

S

$$X_t = C + \phi X_{t-h} + \in_t, h = 0, 1, 2, ... 20$$
 (11)

RNI No.UPBIL/2016/67980

VOL-3* ISSUE-5* (Part-1) August- 2018 Remarking An Analisation

E: ISSN NO.: 2455-0817

$(n = 0, 1, 2, \dots, 20)$ About Productivity Data						
lag h	Aurangabad	Parbhani	Osmanabad	Beed	Nanded	
0	103975.2	159151.7	156327.0	111105.2	193135.0	
1	10042.7	17567.4	14882.1	6860.1	-13884.5	
2	-8031.8	43000.5	21124.9	-12327.9	46248.5	
3	26637.8	25092.2	61914.9	34111.1	66202.9	
4	7027.9	-52247.5	-26517.7	-8819.5	-19657.5	
5	-19239.0	40781.5	29797.7	17320.5	82390.8	
6	14742.0	-23250.1	14078.5	3680.4	-48028.8	
7	-8155.9	-7740.7	-47851.0	-4383.1	36816.0	
8	-37595.9	56787.3	14292.5	686.6	20952.2	
9	37768.1	-17516.1	-22715.2	-25868.5	-42296.6	
10	21860.5	55604.8	-18361.9	17475.0	56750.6	
11	-15115.4	44699.8	66608.0	-9055.6	-6069.2	
12	9544.6	12149.2	-24486.2	4329.9	45781.9	
13	24073.0	68941.0	26181.2	27420.1	10682.6	
14	-20176.0	-23003.0	33319.7	-35027.8	4526.1	
15	57675.6	-25.0	20981.5	44178.4	53078.4	
16	35802.6	20601.7	45725.5	41736.5	-771.7	
17	-31947.6	-83694.9	-243.8	-16181.4	-15197.6	
18	-16509.3	15129.9	257.7	29196.8	-47242.8	
19	31744.4	-39109.5	-12277.6	-12335.0	3448.8	
20	-26161.5	47543.1	-52534.0	-66874.4	-5487.9	
	Table-5.2B: Corre	lation coeficient l	between h and Au	to covariance is :		
						

Table-5.2A: Auto co-variances: Districtwise, Ordinary Time Series, Lag Values

Corr. Coeficient-0.246-0.342-0.393-0.354 -0.438^* Correlation coefficient r = 0.433 is the critical value for 19 d f at 5% L. S. * shows the significant value.

Table-5.2C:Test of significance for $\beta_1 = 0$ the model : $\Upsilon_i(h) = (\beta_0)_i + (\beta_1)_i h + \varepsilon_i$, (i = 1, 2,...5: h = 0, 1,20)

District	Coeficient	Estimate	Standard Error	t Stat	Significance
Aurangabad	βο	22781.8	14128.1	1.613	NS
	β1	-1335.5	1208.5	-1.105	NS
Parbhani	β ₀	45393.7	20793.8	2.183	S
	β1	-2822.9	1778.7	-1.587	NS
Osmanabad	βο	43334.3	18226.6	2.378	S
	β1	-2902.5	1559.1	-1.862	NS
Beed	β ₀	27401.8	14456.0	1.896	NS
	β1	-2039.1	1236.6	-1.649	NS
Nanded	βο	58552.6	21182.0	2.764	NS
	β1	-3848.7	1811.9	-2.124*	NS

t =2.93 is the crical value for 19 d f at 5% L. S. * shows the significant value

Correlation's between γ_{ij} (h) and h were found to be significant in Nanded district only, showing that the time series can be reasonably assumed to be not stationary in Nanded district. The coefficient β_1 is significant in Nanded district with negative value showing that it has been experiencing significantly declining productivity over the past years. Productivity time series of five districts treated as a single vector time series

Out of the 25 components in productivity series 6 series showed significant (coefficients) intercepts and slope. Due to the significant values in productivity the Nanded-0.438* individually Parbhani/ Aurngabad-0.460*, Parbhani/Osmanabad-0.502*, Parbhani/Beed-0.437*, Parbhani/Nanded-0.515*, Nanded/Osmanabad-0.484* in combinations seem to be causing the variations responsible for the non-stationary nature of the series. Hence we may conclude that the regional productivity of kharif jawar is not stationary and must have a trend.

	Table=5.5A.		ala.		
District	Aurangabad	Parbhani	Osmanabad	Beed	Nanded
Aurangabad	-48968.4	-78792.2	-83784.8	-70735.4	-81392.5
Parbhani	-51937.9	-103505.6	-103275.0	-88929.3	-103635.9
Osmanabad	-39764.2	-105406.3	-106423.4	-93579.1	-94460.8
Beed	-32422.9	-74668.5	-83668.8	-74766.7	-69376.6
Nanded	-68061.7	-119994.9	-131202.3	-107562.8	-141119.2

Table=5.3A: Cov.(h, $\Gamma_{ij}(h)$) Matrix values about productivity data.

E: ISSN NO.: 2455-0817

RNI No.UPBIL/2016/67980

VOL-3* ISSUE-5* (Part-1) August- 2018 Remarking An Analisation

Та	ble-5.3B: ρ _{ij} (h) =	Correlation(h, I	'ij(h)) Matrix Value	es About Product	ivity Data
	A	Daulah ani		Deed	N Laura d

District	Aurangabad	Parbhani	Osmanabad	Beed	Nanded
Aurangabad	-0.246	-0.377	-0.397	-0.344	-0.397
Parbhani	-0.460*	-0.342	-0.502*	-0.437*	-0.515*
Osmanabad	-0.269	-0.365	-0.393	-0.394	-0.410
Beed	-0.212	-0.320	-0.405	-0.354	-0.380
Nanded	-0.405	-0.326	-0.484*	-0.381	-0.438*

Correlation coefficient r = 0.433 is the critical value for 19 d f at 5% L. S. * shows the significant value.

Table-5.3C: Test of significance for β_1 =0, the model Υ ij(h) = β ij (0) + β ij (1)h + eij (h), (i = 1,2...5; districts, j = 1,2...5; districts, and h = 0, 12,20; Lag values.)

District/District	Coefficient	Ectimate	6tond	t stat	Significant
District/District	Coemcient	Estimate	Stanu.	1-5181	(S) or not
Aurangabad/Aurangabad	ρ	22701.0		1 612	
Aurangabau/Aurangabau	р ₀	1225 5	1209 5	1 105	NS
Aurangahad/Parhhani	p ₁	-1335.5	14160.7	-1.105	110
Aurangabau/Farbhani	β ₀	31942.3	14169.7	2.254	
Auron solved/Oemenahad	β1	-2148.9	1212.1	-1.773	113
Aurangabad/Osmanabad	0	34928.2	14183.7	2.463	
Auroperation of /Deed	β ₀	-2285.0	1213.3	-1.883	NO NC
Aurangabad/Beed	β1	26684.1	14114.5	1.891	INS NC
	βο	-1929.1	1207.4	-1.598	NS
Aurangabad/Nanded	β1	34788.1	13781.0	2.524	S
	β ₀	-2219.8	1178.8	-1.883	NS
Darkhani/Auran sahad		00700 5	7000.0	0.005	
Parbhani/Aurangabad	βο	22709.5	7338.3	3.095	5
	β1	-1416.5	627.7	-2.257*	S
Parbhani/Parbhani	βο	45393.7	20793.8	2.183	S
	β1	-2822.9	1778.7	-1.587	NS
Parbhani/Osmanabad	βο	43133.6	13000.2	3.318	S
	β1	-2816.6	1112.0	-2.533*	S
Parbhani/Beed	βo	34001.5	13385.8	2.540	S
	β1	-2425.3	1145.0	-2.118*	S
Parbhani/Nanded	βo	43028.4	12603.8	3.414	S
	β1	-2826.4	1078.1	-2.622*	S
Osmanabad/Aurangabad	βo	20949.7	10429.4	2.009	NS
	β1	-1084.5	892.1	-1.216	NS
Osmanabad/Parbhani	βo	39119.5	19675.2	1.988	NS
	β1	-2874.7	1683.0	-1.708	NS
Osmanabad/Osmanabad	βo	43334.3	18226.6	2.378	S
	β1	-2902.5	1559.1	-1.862	NS
Osmanabad/Beed	βo	33508.5	15956.4	2.100	S
	β1	-2552.2	1364.9	-1.870	NS
Osmanabad/Nanded	βο	39376.3	15356.7	2.564	S
	β1	-2576.2	1313.6	-1.961	NS
		•		•	
Beed/Aurangabad	βo	16551.0	10926.9	1.515	NS
_	β1	-884.3	934.7	-0.946	NS
Beed/Parbhani	βο	27822.4	16158.3	1.722	NS
	β1	-2036.4	1382.2	-1.473	NS
Beed/Osmanabad	Bo	33362.1	13831.0	2.412	S
	<u>β1</u>	-2281.9	1183.1	-1.929	NS
Beed/Beed	Bo	27401.8	14456.0	1.896	NS
	<u></u>	-2039 1	1236.6	-1.649	NS
Beed/Nanded	Bo	28931.6	12371.0	2 339	S
	P0 R₄	-1892.1	1058.2	-1 788	NS
	l pi	1092.1	1000.2	1.700	
Nanded/Aurangabad	ßo	31255.3	11232.3	2 783	S
	R.	-1856.2	960.8	-1 932	NS
	P1	-1000.2	300.0	-1.352	140

RNI No.UPBIL/2016/67980

E: ISSN NO.: 2455-0817

VOL-3* ISSUE-5* (Part-1) August- 2018 Remarking An Analisation

Nanded/Parbhani	βο	50298.3	25413.5	1.979	NS
	β1	-3272.6	2173.9	-1.505	NS
Nanded/Osmanabad	βo	55036.1	17356.3	3.171	S
	β1	-3578.2	1484.7	-2.410*	S
Nanded/Beed	βo	41816.9	19075.1	2.192	S
	β1	-2933.5	1631.7	-1.798	NS
Nanded/Nanded	βo	58552.6	21182.0	2.764	NS
	β1	-3848.7	1811.9	-2.124*	NS

t =2.093 is the crical value for 19 d f at 5% L. S. * shows the significant (S) value

Thus we have a situation where when treated as individual series the Nanded district is not stationary and when treated as vector time series the whole of the vector time series is not stationary. This conforms one of the properties of vector time series,

If one of the component series is non stationary, the vector series as a whole is also a non stationary, [14].

When we think of the productivity of kharif jawar of whole of the region, the district Nanded individually Parbhani/Aurangabad, Parbhani/ Osmanabad, Parbhani/Beed, Parbhani/ Nanded, Nanded/Osmanabad in combinations seem to be causing the variations responsible for the nonstationary nature of the series. Hence we may conclude that the regional productivity of kharif jawar is not stationary and must have a trend.

Acknowledgement

The authors are thankful to Principal Dr. S. S. KADAM D. S. M. College Parbhani, for providing the necessary facilities for the present investigation and encouragement. We are also grateful to Prof. H. S. Acharya, Puna College, PUNE, for his valuable guidance.

References

- Acharya, H. S., Quantification of Climatic Component of Food Grains Production; J. of Maharastra Agric. Univ., 16(3) (1991), 324-326.
- Anonymous, "Season and Crop Report", Maharastra state (1971, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81).
- Anonymous, "Epitome of Agriculture", Commissionarate of Agriculture, Pune (1982, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96) and (1998, 99, 2000 and 2001).
- Anonymous, "Maharastra Quarterly Bulletin of Economics and Statistics", Directorate of Economics and Statistics Govt. of Maharastra, Bombay (1997).
- 5. Bable, B. L. and Acharya H.S., Time Series: The Concept and Properties to the Stationary Time

Series; Bulletin of the Marathwada Mathematical Society., 7(1) (2006), 1-10.

- Bable, B. L. and Pawar D., D.. Regional Vector Time Series Approach;. Multidisciplinary International Journal Remarking an Analisation,2(5) (2017), 71-77.
- 7. Bable, B. L. and Pawar D., D.. Vector Time Series; Shrinkhala Ek Shodhparak Vaicharik Patrika, 4(3) (2016), 05-14.
- Bable, B. L. and Pawar D., D.. Vector Time Series the Concept and Properties to the Vector Stationary Time Series;. International Research Journal Agricultural Economics and Statistics, 1(1) (2012), 84-95.
- Bharambe, A. T., Agricultural production trend and its components in marathwada region of Maharastra state; Indian J. Agric. Econ., (1979), 31:99.
- Bhattacharya, G. K. and Johanson R. A., Statistical Concepts and Methods. John Wiley and Sons, New York (1977).
- Das, P. K., Statistics and Its Applications to Meteorology. Indian J. pure appl. Math., 26(6) (1995), 531-546.
- Deole, C. D. and Waghamare, P. R., Impact of price policy in cotton monopoly procurement programme on area, production and yield, of study of Marathwada region I. J. A. R., 12(1) (1982), 620-621.
- 13. Dhoble, M. V. Thete, M. R. and Khating, E. A., Productivity of some kharif crops as influenced by varying dates of planting under rained condition. Indian J. Aron., 3591-20 (1990), 190-198.
- 14. Fuller W. A., Introduction to Statistical Time Series. John Wiley and Sons, New York (1976).
- Kale V. C., Agricultural Development in Parbhani District. Ph. D. Thesis Submitted to M. A. U., Parbhani (1983).
- Patil, V. D. and Kalyanker S. P., Impact of Research on Productivity of Agricultural in Maharastra. Agri. Situ. India, 47(5) (1982), 321-326.